Spectral Flow and Iteration of Closed Semi-riemannian Geodesics

نویسنده

  • MIGUEL ANGEL JAVALOYES
چکیده

We introduce the notion of spectral flow along a periodic semi-Riemannian geodesic, as a suitable substitute of the Morse index in the Riemannian case. We study the growth of the spectral flow along a closed geodesic under iteration, determining its asymptotic behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Consequences of Contractible Geodesics on Surfaces

The geodesic flow of any Riemannian metric on a geodesically convex surface of negative Euler characteristic is shown to be semi-equivalent to that of any hyperbolic metric on a homeomorphic surface for which the boundary (if any) is geodesic. This has interesting corollaries. For example, it implies chaotic dynamics for geodesic flows on a torus with a simple contractible closed geodesic, and ...

متن کامل

On The Closed Geodesics Problem

In this paper we review some important results on the closed geodesics problem for compact Riemannian manifolds, as the Gromoll-Mayer Theorem, and discuss some extension of those results to the case of Finsler and semi Rimannian manifolds.

متن کامل

Closed Geodesics in Compact Riemannian Good Orbifolds and Horizontal Periodic Geodesics of Riemannian Foliations

In this paper we prove the existence of closed geodesics in certain types of compact Riemannian good orbifolds. This gives us an elementary alternative proof of a result due to Guruprasad and Haefliger. In addition, we prove some results about horizontal periodic geodesics of Riemannian foliations and stress the relation between them and closed geodesics in Riemannian orbifolds. In particular w...

متن کامل

Curve Shortening and the Topology of Closed Geodesics on Surfaces

We study “flat knot types” of geodesics on compact surfaces M2. For every flat knot type and any Riemannian metric g we introduce a Conley index associated with the curve shortening flow on the space of immersed curves on M2. We conclude existence of closed geodesics with prescribed flat knot types, provided the associated Conley index is nontrivial.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008